Your browser doesn't support javascript.
loading
Computation of random time-shift distributions for stochastic population models.
Morris, Dylan; Maclean, John; Black, Andrew J.
Afiliación
  • Morris D; School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia. dylan.morris@adelaide.edu.au.
  • Maclean J; School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
  • Black AJ; School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
J Math Biol ; 89(3): 33, 2024 Aug 12.
Article en En | MEDLINE | ID: mdl-39133278
ABSTRACT
Even in large systems, the effect of noise arising from when populations are initially small can persist to be measurable on the macroscale. A deterministic approximation to a stochastic model will fail to capture this effect, but it can be accurately approximated by including an additional random time-shift to the initial conditions. We present a efficient numerical method to compute this time-shift distribution for a large class of stochastic models. The method relies on differentiation of certain functional equations, which we show can be effectively automated by deriving rules for different types of model rates that arise commonly when mass-action mixing is assumed. Explicit computation of the time-shift distribution can be used to build a practical tool for the efficient generation of macroscopic trajectories of stochastic population models, without the need for costly stochastic simulations. Full code is provided to implement the calculations and we demonstrate the method on an epidemic model and a model of within-host viral dynamics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Dinámica Poblacional / Procesos Estocásticos / Conceptos Matemáticos / Epidemias / Modelos Biológicos Límite: Humans Idioma: En Revista: J Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Dinámica Poblacional / Procesos Estocásticos / Conceptos Matemáticos / Epidemias / Modelos Biológicos Límite: Humans Idioma: En Revista: J Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Australia
...