Your browser doesn't support javascript.
loading
Degradation-driven vegetation-soil-microbe interactions alter microbial carbon use efficiency in Moso bamboo forests.
Yuan, Ning; Fang, Fang; Tang, Xiaoping; Lv, Shaofeng; Wang, Tongying; Chen, Xin; Sun, Taoran; Xia, Yiyun; Zhou, Yufeng; Zhou, Guomo; Shi, Yongjun; Xu, Lin.
Afiliación
  • Yuan N; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Fang F; Taizhou Forestry Technology Promotion Center, Taizhou 318000, China.
  • Tang X; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Lv S; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Wang T; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Chen X; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Sun T; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Xia Y; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Zhou Y; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Zhou G; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Shi Y; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
  • Xu L; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Scien
Sci Total Environ ; 951: 175435, 2024 Nov 15.
Article en En | MEDLINE | ID: mdl-39134269
ABSTRACT
Microbial carbon utilization efficiency (CUE) is a crucial indicator for evaluating the efficiency of soil carbon sequestration and transformation, which is applied to quantify the proportion of soil carbon extracted by microbes for anabolism (growth) and catabolism (respiration). Previous studies have shown that the degradation of Moso bamboo forests (Phyllostachys edulis) destroyed the aboveground bamboo structure, reduced vegetation carbon storage, and weakened ecosystem carbon sequestration capacity. Interestingly, soil organic carbon stocks are gradually increasing. However, the mechanism by which degradation-induced changes in soil and vegetation characteristics affect microbial CUE and drive soil carbon sequestration remains unclear. Here we selected four stands with the same origin but different degradation years (intensive management, CK; 2 years' degradation, DM1; 6 years' degradation, DM2; and 10 years' degradation, DM3) based on the local management profiles. The principle of space-for-time substitution was used to investigate the changes in microbial CUE along a degradation time and to further identify the controlling biotic and abiotic factors. Our finding showed that microbial CUE increased by 12.27 %, 31.01 %, and 55.95 %, respectively, compared with CK; whereas microbial biomass turnover time decreased from 23.99 ± 1.11 to 17.16 ± 1.20 days. Promoting microbial growth was the main pathway to enhance microbial CUE. Massive inputs of vegetative carbon replenished soil carbon substrate content, and altered microbial communities and life history strategy, which in turn promoted microbial growth and increased microbial CUE. These findings provide theoretical support for the interactions between carbon dynamics and microbial physiology in degraded bamboo forests, and reinforce the importance of vegetation and microbial properties and soil carbon substrates in predicting microbial CUE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Carbono / Bosques / Secuestro de Carbono Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Carbono / Bosques / Secuestro de Carbono Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article
...