Your browser doesn't support javascript.
loading
Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.
Sawano, Shinnosuke; Kodera, Satoshi; Setoguchi, Naoto; Tanabe, Kengo; Kushida, Shunichi; Kanda, Junji; Saji, Mike; Nanasato, Mamoru; Maki, Hisataka; Fujita, Hideo; Kato, Nahoko; Watanabe, Hiroyuki; Suzuki, Minami; Takahashi, Masao; Sawada, Naoko; Yamasaki, Masao; Sato, Masataka; Katsushika, Susumu; Shinohara, Hiroki; Takeda, Norifumi; Fujiu, Katsuhito; Daimon, Masao; Akazawa, Hiroshi; Morita, Hiroyuki; Komuro, Issei.
Afiliación
  • Sawano S; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Kodera S; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Setoguchi N; Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.
  • Tanabe K; Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.
  • Kushida S; Department of Cardiovascular Medicine, Asahi General Hospital, Chiba, Japan.
  • Kanda J; Department of Cardiovascular Medicine, Asahi General Hospital, Chiba, Japan.
  • Saji M; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan.
  • Nanasato M; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan.
  • Maki H; Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Japan.
  • Fujita H; Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Japan.
  • Kato N; Department of Cardiology, Tokyo Bay Medical Center, Urayasu, Japan.
  • Watanabe H; Department of Cardiology, Tokyo Bay Medical Center, Urayasu, Japan.
  • Suzuki M; Department of Cardiology, JR General Hospital, Tokyo, Japan.
  • Takahashi M; Department of Cardiology, JR General Hospital, Tokyo, Japan.
  • Sawada N; Department of Cardiology, NTT Medical Center Tokyo, Tokyo, Japan.
  • Yamasaki M; Department of Cardiology, NTT Medical Center Tokyo, Tokyo, Japan.
  • Sato M; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Katsushika S; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Shinohara H; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Takeda N; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Fujiu K; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Daimon M; Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan.
  • Akazawa H; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
  • Morita H; Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.
  • Komuro I; Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan.
PLoS One ; 19(8): e0307978, 2024.
Article en En | MEDLINE | ID: mdl-39141600
ABSTRACT
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Electrocardiografía Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Electrocardiografía Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Japón
...