Your browser doesn't support javascript.
loading
Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli.
Nonaka, Daisuke; Hirata, Yuuki; Kishida, Mayumi; Mori, Ayana; Fujiwara, Ryosuke; Kondo, Akihiko; Mori, Yutaro; Noda, Shuhei; Tanaka, Tsutomu.
Afiliación
  • Nonaka D; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
  • Hirata Y; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
  • Kishida M; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
  • Mori A; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
  • Fujiwara R; Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan.
  • Kondo A; Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan.
  • Mori Y; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
  • Noda S; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
  • Tanaka T; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
Biotechnol J ; 19(8): e2400210, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39167552
ABSTRACT
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica / Glucosa Idioma: En Revista: Biotechnol J Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica / Glucosa Idioma: En Revista: Biotechnol J Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón
...