Your browser doesn't support javascript.
loading
Effect of steam explosion pretreatment on the fermentation characteristics of polysaccharides from tea residue.
Ge, Qing; Xiao, Guo-Ming; Wang, Lu-Yao; Xu, Jian-Ping; Hou, Chen-Long; Liao, Ting-Xia; Rao, Xiu-Hua; Mao, Jian-Wei; Chen, Li-Chun.
Afiliación
  • Ge Q; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China. Electronic address: gq0318@163.com.
  • Xiao GM; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Wang LY; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Xu JP; Department of Biology, McMaster University, Hamilton, ON, Canada.
  • Hou CL; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Liao TX; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Rao XH; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Mao JW; Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China.
  • Chen LC; School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
Int J Biol Macromol ; : 134920, 2024 Aug 20.
Article en En | MEDLINE | ID: mdl-39173808
ABSTRACT
Green tea residues are the by-product of tea processing and they contain a large number of bioactive ingredients. Steam explosion has been recognized as one of the most innovative pretreatments for modifying the physicochemical characteristic of polysaccharides from lignocellulosic materials. However, the comparison of biological activity of steam exploded (SE-GTR) and unexploded (UN-GTR) green tea residue polysaccharides was still unclear, which prompted the determination of the efficacy of steam explosion in tea residue resource utilization. In this study, the effects of two extracted polysaccharides UN-GTR and SE-GTR on human gut microbiota in vitro fermentation were conducted. The results showed that after steam explosion pretreatment, SE-GTR displayed more loose and porous structures, resulting in higher polysaccharide content (2483.44±0.5 µg/mg) compared to UN-GTR (1903.56±2.6 µg/mg). In addition, after 24 h fermentation, gut microbiota produced more beneficial metabolites by SE-GTR. The largest SCFAs produced among samples was acetic acid, propionic acid and butyric acid. Furthermore, SE-GTR could regulate the composition and diversity of microbial community, increasing the abundance of beneficial bacteria, such as Bifidobacterium. These results revealed that steam explosion pretreatment could be a promising and efficient approach to enhance the antioxidant activity and bioavailability of polysaccharides isolated from tea residues.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article
...