Your browser doesn't support javascript.
loading
Toxicokinetics of microplastics in Macrobrachium nipponense and their impact on the bioavailability of loaded pollutants.
Zhang, Leibo; Lu, Guanghua; Ling, Xin; Yan, Zhenhua; Liu, Jianchao; Ding, Keqiang.
Afiliación
  • Zhang L; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
  • Lu G; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China. Electronic address: ghlu@hhu.edu.cn.
  • Ling X; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
  • Yan Z; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
  • Liu J; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
  • Ding K; School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China.
J Hazard Mater ; 478: 135610, 2024 Oct 05.
Article en En | MEDLINE | ID: mdl-39178771
ABSTRACT
Microplastics (MPs) have unique toxicokinetic (TK) processes that differ from those of soluble pollutants. This study investigated the ingestion, migration, accumulation, and clearance of environmental aging MPs in the Japanese swamp shrimp (Macrobrachium nipponense). The concentrations of plastic additives and personal care products adsorbed onto MPs in natural river water were determined, and TK models for MPs and MPs-loaded pollutants were developed. Results showed that the formation of surface biofilms and alterations in the distribution of MPs in waters caused by environmental aging affect MPs bioavailability, which is mainly related to the feeding habits of shrimp. The decrease in MPs particle size caused by biological digestion and the increase in the number of oxygen-containing functional groups caused by environmental aging affect the TK process of MPs. The TK model of MPs-loaded pollutants revealed the cleaning effect of shrimp on pollutants adsorbed onto MPs during swallowing and spitting MPs. This cleaning effect significantly increases the bioavailability of MPs-associated pollutants in aquatic environments. This study provides a new perspective for understanding the interactions between environmental MPs and their associated pollutants in aquatic ecosystems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Disponibilidad Biológica / Palaemonidae / Microplásticos Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Disponibilidad Biológica / Palaemonidae / Microplásticos Límite: Animals Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China
...