Your browser doesn't support javascript.
loading
Molecular Hydrogen and Extracorporeal Gas Exchange: A Match Made in Heaven? An In Vitro Pilot Study.
Mouzakis, Foivos Leonidas; Hima, Flutura; Kashefi, Ali; Greven, Johannes; Rink, Lothar; van der Vorst, Emiel P C; Jankowski, Joachim; Mottaghy, Khosrow; Spillner, Jan.
Afiliación
  • Mouzakis FL; ECC Lab, Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • Hima F; Department of Thoracic Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • Kashefi A; ECC Lab, Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • Greven J; Department of Thoracic Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • Rink L; Institute of Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • van der Vorst EPC; Institute for Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
  • Jankowski J; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany.
  • Mottaghy K; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany.
  • Spillner J; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, 80336 München, Germany.
Biomedicines ; 12(8)2024 Aug 18.
Article en En | MEDLINE | ID: mdl-39200347
ABSTRACT
Extracorporeal circulation (ECC) is frequently implemented in a vast array of modalities such as hemodialysis, cardiopulmonary bypass, extracorporeal membrane oxygenation (ECMO), and others. Patients receiving any such therapy are frequently encumbered with chronic inflammation, which is inherently accompanied by oxidative stress. However, ECC treatments themselves are also responsible for sustaining or promoting inflammation. On these grounds, an in vitro study was designed to investigate the therapeutic potential of molecular hydrogen (H2) against pro-inflammatory agents in ECC settings. Five miniature ECMO circuits and a small vial (Control) were primed with heparinized blood from healthy adult donors (n = 7). Three of the ECMO systems were injected with lipopolysaccharide (LPS), out of which one was additionally treated with an H2 gas mixture. After 6 h, samples were drawn for the assessment of specific biomarkers (MCP-1, MPO, MDA-a, TRX1, and IL-6). Preliminary results indicate a progressive oxidative and inflammatory response between the six systems. Circulation has triggered inflammation and blood trauma, but the staggering influence of LPS in this outcome is indisputable. Accordingly, hydrogen's remedial potential becomes immediately apparent as biomarker concentrations tend to be lower in the H2-handled circuit. Future research should have distinct objectives (e.g., dosage/duration/cycle of hydrogen administration) in order to ascertain the optimal protocol for patient treatment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Alemania
...