Your browser doesn't support javascript.
loading
Unlocking reproducible transcriptomic signatures for acute myeloid leukaemia: Integration, classification and drug repurposing.
Chen, Haoran; Lu, Jinqi; Wang, Zining; Wu, Shengnan; Zhang, Shengxiao; Geng, Jie; Hou, Chuandong; He, Peifeng; Lu, Xuechun.
Afiliación
  • Chen H; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
  • Lu J; School of Management, Shanxi Medical University, Taiyuan, China.
  • Wang Z; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing,
  • Wu S; Department of Computer Science, Boston University, Boston, Massachusetts, USA.
  • Zhang S; Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China.
  • Geng J; Medical School of Chinese PLA, Beijing, China.
  • Hou C; School of Management, Shanxi Medical University, Taiyuan, China.
  • He P; Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
  • Lu X; Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China.
J Cell Mol Med ; 28(17): e70085, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39267259
ABSTRACT
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http//www.csamldb.com.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Perfilación de la Expresión Génica / Reposicionamiento de Medicamentos / Transcriptoma Límite: Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leucemia Mieloide Aguda / Perfilación de la Expresión Génica / Reposicionamiento de Medicamentos / Transcriptoma Límite: Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: China
...