Your browser doesn't support javascript.
loading
Progress on deep learning in genomics.
Bao, Yan-Chun; Shi, Cai-Xia; Zhang, Chuan-Qiang; Gu, Ming-Juan; Zhu, Lin; Liu, Zai-Xia; Zhou, Le; Ma, Feng-Ying; Na, Ri-Su; Zhang, Wen-Guang.
Afiliación
  • Bao YC; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Shi CX; Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China.
  • Zhang CQ; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Gu MJ; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
  • Zhu L; National Center of Technology Innovation for Dairy Industry, Hohhot 010080, China.
  • Liu ZX; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Zhou L; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Ma FY; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
  • Na RS; Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China.
  • Zhang WG; College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
Yi Chuan ; 46(9): 701-715, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39275870
ABSTRACT
With the rapid growth of data driven by high-throughput sequencing technologies, genomics has entered an era characterized by big data, which presents significant challenges for traditional bioinformatics methods in handling complex data patterns. At this critical juncture of technological progress, deep learning-an advanced artificial intelligence technology-offers powerful capabilities for data analysis and pattern recognition, revitalizing genomic research. In this review, we focus on four major deep learning models Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), and Generative Adversarial Network(GAN). We outline their core principles and provide a comprehensive review of their applications in DNA, RNA, and protein research over the past five years. Additionally, we also explore the use of deep learning in livestock genomics, highlighting its potential benefits and challenges in genetic trait analysis, disease prevention, and genetic enhancement. By delivering a thorough analysis, we aim to enhance precision and efficiency in genomic research through deep learning and offer a framework for developing and applying livestock genomic strategies, thereby advancing precision livestock farming and genetic breeding technologies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Aprendizaje Profundo Límite: Animals / Humans Idioma: En Revista: Yi Chuan Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Aprendizaje Profundo Límite: Animals / Humans Idioma: En Revista: Yi Chuan Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China
...