Your browser doesn't support javascript.
loading
Nucleolin malonylation as a nuclear-cytosol signal exchange mechanism to drive cell proliferation in Hepatocarcinoma by enhancing AKT translation.
Sun, Liang; Meng, Hanjing; Liu, Tao; Zhao, Qiong; Xia, Mingyi; Zhao, Zhongjun; Qian, Yuting; Cui, Hao; Zhong, Xuefei; Chai, Keli; Tian, Yang; Sun, Yang; Zhu, Bao; Di, Jiehui; Shui, Guanghou; Zhang, Lianjun; Zheng, Junnian; Guo, Shutao; Liu, Yong.
Afiliación
  • Sun L; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Meng H; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Liu T; Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
  • Zhao Q; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Xia M; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Zhao Z; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Qian Y; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Cui H; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Zhong X; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Chai K; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Tian Y; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Sun Y; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Zhu B; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Di J; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
  • Shui G; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
  • Zhang L; National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medica
  • Zheng J; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address: jnzheng@xzhmu.edu.cn.
  • Guo S; Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China. Electronic address: stguo@nankai.edu.cn.
  • Liu Y; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangs
J Biol Chem ; 300(10): 107785, 2024 Sep 19.
Article en En | MEDLINE | ID: mdl-39305961
ABSTRACT
Cancer cells undergo metabolic reprogramming that is intricately linked to malignancy. Protein acylations are especially responsive to metabolic changes, influencing signal transduction pathways and fostering cell proliferation. However, as a novel type of acylations, the involvement of malonylation in cancer remains poorly understood. In this study, we observed a significant reduction in malonyl-CoA levels in hepatocellular carcinoma (HCC), which correlated with a global decrease in malonylation. Subsequent nuclear malonylome analysis unveiled nucleolin (NCL) malonylation, which was notably enhanced in HCC biopsies. we demonstrated that NCL undergoes malonylation at lysine residues 124 and 398. This modification triggers the translocation of NCL from the nucleolus to nucleoplasm and cytoplasm, binding to AKT mRNA, and promoting AKT translation in HCC. Silencing AKT expression markedly attenuated HCC cell proliferation driven by NCL malonylation. These findings collectively highlight nuclear signaling in modulating AKT expression, suggesting NCL malonylation as a novel mechanism through which cancer cells drive cell proliferation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Biol Chem Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Biol Chem Año: 2024 Tipo del documento: Article
...