Your browser doesn't support javascript.
loading
Oscillatory cortico-cortical connectivity during tactile discrimination between dynamic and static stimulation.
Wang, Wenjie; Liu, Yuan; Wang, Guoyao; Cheng, Qian; Ming, Dong.
Afiliación
  • Wang W; Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China.
  • Liu Y; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China.
  • Wang G; Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China.
  • Cheng Q; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China.
  • Ming D; Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China.
Cereb Cortex ; 34(9)2024 Sep 03.
Article en En | MEDLINE | ID: mdl-39331031
ABSTRACT
Fine sensory modalities play an essential role in perceiving the world. However, little is known about how the cortico-cortical distinguishes between dynamic and static tactile signals. This study investigated oscillatory connectivity during a tactile discrimination task of dynamic and static stimulation via electroencephalogram (EEG) recordings and the fast oscillatory networks across widespread cortical regions. While undergoing EEG recordings, the subject felt an electro-tactile presented by a 3-dot array. Each block consisted of 3 forms of stimulation Spatio-temporal (dynamic), Spatial (static), and Control condition (lack of electrical stimulation). The average event-related potential for the Spatial and Spatio-temporal conditions exhibited statistically significant differences between 25 and 75, 81 and 121, 174 and 204 and 459 and 489 ms after stimulus onset. Based on those times, the sLORETA approach was used to reconstruct the inverse solutions of EEG. Source localization appeared superior parietal at around 25 to 75 ms, in the primary motor cortex at 81 to 121 ms, in the central prefrontal cortex at 174 to 204 and 459 to 489 ms. To better assess spectral brain functional connectivity, we selected frequency ranges with correspondingly significant differences for static tactile stimulation, these are concentrated in the Theta, Alpha, and Gamma bands, whereas for dynamic stimulation, the relative energy change bands are focused on the Theta and Alpha bands. These nodes' functional connectivity analysis (phase lag index) showed 3 distinct distributed networks. A tactile information discrimination network linked the Occipital lobe, Prefrontal lobe, and Postcentral gyrus. A tactile feedback network linked the Prefrontal lobe, Postcentral gyrus, and Temporal lobe. A dominant motor feedforward loop network linked the Parietal cortex, Prefrontal lobe, Frontal lobe, and Parietal cortex. Processing dynamic and static tactile signals involves discriminating tactile information, motion planning, and cognitive decision processing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Electroencefalografía / Percepción del Tacto Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Electroencefalografía / Percepción del Tacto Límite: Adult / Female / Humans / Male Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: China
...