Your browser doesn't support javascript.
loading
Complete blood count as a biomarker for preeclampsia with severe features diagnosis: a machine learning approach.
Araújo, Daniella Castro; de Macedo, Alexandre Afonso; Veloso, Adriano Alonso; Alpoim, Patricia Nessralla; Gomes, Karina Braga; Carvalho, Maria das Graças; Dusse, Luci Maria SantAna.
Afiliación
  • Araújo DC; Huna, São Paulo, SP, Brazil. dani@huna-ai.com.
  • de Macedo AA; Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. dani@huna-ai.com.
  • Veloso AA; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Alpoim PN; Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Gomes KB; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Carvalho MDG; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Dusse LMS; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
BMC Pregnancy Childbirth ; 24(1): 628, 2024 Oct 01.
Article en En | MEDLINE | ID: mdl-39354367
ABSTRACT

OBJECTIVE:

This study introduces the complete blood count (CBC), a standard prenatal screening test, as a biomarker for diagnosing preeclampsia with severe features (sPE), employing machine learning models.

METHODS:

We used a boosting machine learning model fed with synthetic data generated through a new methodology called DAS (Data Augmentation and Smoothing). Using data from a Brazilian study including 132 pregnant women, we generated 3,552 synthetic samples for model training. To improve interpretability, we also provided a ridge regression model.

RESULTS:

Our boosting model obtained an AUROC of 0.90±0.10, sensitivity of 0.95, and specificity of 0.79 to differentiate sPE and non-PE pregnant women, using CBC parameters of neutrophils count, mean corpuscular hemoglobin (MCH), and the aggregate index of systemic inflammation (AISI). In addition, we provided a ridge regression equation using the same three CBC parameters, which is fully interpretable and achieved an AUROC of 0.79±0.10 to differentiate the both groups. Moreover, we also showed that a monocyte count lower than 490 / m m 3 yielded a sensitivity of 0.71 and specificity of 0.72.

CONCLUSION:

Our study showed that ML-powered CBC could be used as a biomarker for sPE diagnosis support. In addition, we showed that a low monocyte count alone could be an indicator of sPE.

SIGNIFICANCE:

Although preeclampsia has been extensively studied, no laboratory biomarker with favorable cost-effectiveness has been proposed. Using artificial intelligence, we proposed to use the CBC, a low-cost, fast, and well-spread blood test, as a biomarker for sPE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Preeclampsia / Biomarcadores / Aprendizaje Automático Límite: Adult / Female / Humans / Pregnancy País/Región como asunto: America do sul / Brasil Idioma: En Revista: BMC Pregnancy Childbirth Asunto de la revista: OBSTETRICIA Año: 2024 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Preeclampsia / Biomarcadores / Aprendizaje Automático Límite: Adult / Female / Humans / Pregnancy País/Región como asunto: America do sul / Brasil Idioma: En Revista: BMC Pregnancy Childbirth Asunto de la revista: OBSTETRICIA Año: 2024 Tipo del documento: Article País de afiliación: Brasil
...