Your browser doesn't support javascript.
loading
Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor.
Asención Diez, Matías D; Peirú, Salvador; Demonte, Ana M; Gramajo, Hugo; Iglesias, Alberto A.
Afiliação
  • Asención Diez MD; Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
J Bacteriol ; 194(6): 1485-93, 2012 Mar.
Article em En | MEDLINE | ID: mdl-22210767
ABSTRACT
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 3_ND Problema de saúde: 3_neglected_diseases / 3_zoonosis Assunto principal: Glicogênio Sintase / Streptomyces coelicolor / Glucose-1-Fosfato Adenililtransferase / UTP-Glucose-1-Fosfato Uridililtransferase / Glucofosfatos Idioma: En Revista: J Bacteriol Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 3_ND Problema de saúde: 3_neglected_diseases / 3_zoonosis Assunto principal: Glicogênio Sintase / Streptomyces coelicolor / Glucose-1-Fosfato Adenililtransferase / UTP-Glucose-1-Fosfato Uridililtransferase / Glucofosfatos Idioma: En Revista: J Bacteriol Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Argentina
...