Your browser doesn't support javascript.
loading
Bridging physiological and evolutionary time-scales in a gene regulatory network.
Marchand, Gwenaëlle; Huynh-Thu, Vân Anh; Kane, Nolan C; Arribat, Sandrine; Varès, Didier; Rengel, David; Balzergue, Sandrine; Rieseberg, Loren H; Vincourt, Patrick; Geurts, Pierre; Vignes, Matthieu; Langlade, Nicolas B.
Afiliação
  • Marchand G; INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France.
  • Huynh-Thu VA; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France.
  • Kane NC; Department of Electrical Engineering and Computer Science and GIGA-R, Systems and Modeling, University of Liège, Liège, Belgium.
  • Arribat S; Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
  • Varès D; INRA, Unité de Recherche en Génomique Végétale (URGV), UMR1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France.
  • Rengel D; INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France.
  • Balzergue S; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France.
  • Rieseberg LH; INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France.
  • Vincourt P; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France.
  • Geurts P; INRA, Unité de Recherche en Génomique Végétale (URGV), UMR1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France.
  • Vignes M; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
  • Langlade NB; Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
New Phytol ; 203(2): 685-696, 2014 Jul.
Article em En | MEDLINE | ID: mdl-24786523
ABSTRACT
Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its evolution. We examined the responses of 32,423 expressed sequences to drought and to abscisic acid (ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the genetic differentiation among populations (FST ) at nodes. We identified two main hubs in the network that transport nitrate in guard cells. This suggests that nitrate transport is a critical aspect of the sunflower physiological response to drought. We observed that differentiation of the network genes in elite sunflower cultivars is correlated with their position and connectivity. This systems biology approach combined molecular data at different time-scales and identified important physiological processes. At the evolutionary level, we propose that network topology could influence responses to human selection and possibly adaptation to dry environments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Reguladoras de Genes / Helianthus / Modelos Genéticos Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Reguladoras de Genes / Helianthus / Modelos Genéticos Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França
...