Your browser doesn't support javascript.
loading
Phosphatidylserine decarboxylase 1 autocatalysis and function does not require a mitochondrial-specific factor.
Onguka, Ouma; Calzada, Elizabeth; Ogunbona, Oluwaseun B; Claypool, Steven M.
Afiliação
  • Onguka O; From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
  • Calzada E; From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
  • Ogunbona OB; From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
  • Claypool SM; From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205 sclaypo1@jhmi.edu.
J Biol Chem ; 290(20): 12744-52, 2015 May 15.
Article em En | MEDLINE | ID: mdl-25829489
ABSTRACT
Phosphatidylethanolamine (PE) is a major cellular phospholipid that can be made by four separate pathways, one of which resides in the mitochondrion. The mitochondrial enzyme that generates PE is phosphatidylserine decarboxylase 1 (Psd1p). The pool of PE produced by Psd1p, which cannot be compensated for by the other cellular PE metabolic pathways, is important for numerous mitochondrial functions, including oxidative phosphorylation and mitochondrial dynamics and morphology, and is essential for murine development. To become catalytically active, Psd1p undergoes an autocatalytic processing step involving a conserved LGST motif that separates the enzyme into α and ß subunits that remain non-covalently attached and are anchored to the inner membrane by virtue of the membrane-embedded ß subunit. It was speculated that Psd1p autocatalysis requires a mitochondrial-specific factor and that for Psd1p to function in vivo, it had to be embedded with the correct topology in the mitochondrial inner membrane. However, the identity of the mitochondrial factor required for Psd1p autocatalysis has not been identified. With the goal of defining molecular requirements for Psd1p autocatalysis, we demonstrate that 1) despite the conservation of the LGST motif from bacteria to humans, only the serine residue is absolutely required for Psd1p autocatalysis and function; 2) yeast Psd1p does not require its substrate phosphatidylserine for autocatalysis; and 3) contrary to a prior report, yeast Psd1p autocatalysis does not require mitochondrial-specific phospholipids, proteins, or co-factors, because Psd1p re-directed to the secretory pathway undergoes autocatalysis normally and is fully functional in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Carboxiliases / Proteínas Mitocondriais Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Carboxiliases / Proteínas Mitocondriais Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2015 Tipo de documento: Article
...