Antimicrobial activity, structural evaluation and vibrational (FT-IR and FT-Raman) study of pyrrole containing vinyl derivatives.
Spectrochim Acta A Mol Biomol Spectrosc
; 154: 47-57, 2016 Feb 05.
Article
em En
| MEDLINE
| ID: mdl-26513227
In this paper we present structural and vibrational study of three vinylpyrrole derivatives: 2-Cyano-3-(1H-pyrrol-2-yl)-acrylamide (CPA), 1-(1H-Pyrrol-2-yl)-Pent-1-en-3-one (PP) and 1-(1H-Pyrrol-2-yl)-but-1-en-3-one (PB), using ab initio, DFT and experimental approaches. The quantum chemical calculation have been performed on B3LYP method and 6-311+G(d,p) basis set. The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. The experimental FT-IR and Raman study clearly indicate that the compound exist as dimer in solid state. The binding energies of (CPA), (PP) and (PB) dimers are found to be 20.95, 18.75 and 19.18 kcal/mol, respectively. The vibrational analysis shows red shifts in v(N-H) and v(C=O) stretching as result of dimer formation. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using NBO analysis. Topological and energetic parameters reveal the nature of interactions in dimer. The local electronic descriptors analyses were used to predict the reactive sites in the molecule. Calculated first static hyperpolarizability of CPA, PP and PB is found to be 10.41×10(-30), 18.93×10(-30), 18.29×10(-30) esu, respectively, shows that investigated molecules will have non-linear optical response and might be used as non-linear optical (NLO) material. These vinylpyrrole compounds (CPA), (PP) and (PB) showed antifungal and antibacterial activity against Aspergillus niger and gram-positive bacteria Bacillus subtili.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pirróis
/
Anti-Infecciosos
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Spectrochim Acta A Mol Biomol Spectrosc
Assunto da revista:
BIOLOGIA MOLECULAR
Ano de publicação:
2016
Tipo de documento:
Article