Your browser doesn't support javascript.
loading
Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex.
Nishimura, Takeshi; Mochizuki, Susumu; Ishii-Minami, Naoko; Fujisawa, Yukiko; Kawahara, Yoshihiro; Yoshida, Yuri; Okada, Kazunori; Ando, Sugihiro; Matsumura, Hideo; Terauchi, Ryohei; Minami, Eiichi; Nishizawa, Yoko.
Afiliação
  • Nishimura T; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
  • Mochizuki S; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
  • Ishii-Minami N; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
  • Fujisawa Y; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
  • Kawahara Y; Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan.
  • Yoshida Y; Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan.
  • Okada K; Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Ando S; Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Matsumura H; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
  • Terauchi R; Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
  • Minami E; Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
  • Nishizawa Y; Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
PLoS Pathog ; 12(10): e1005921, 2016 Oct.
Article em En | MEDLINE | ID: mdl-27711180
ABSTRACT
Magnaporthe oryzae, the fungus causing rice blast disease, should contend with host innate immunity to develop invasive hyphae (IH) within living host cells. However, molecular strategies to establish the biotrophic interactions are largely unknown. Here, we report the biological function of a M. oryzae-specific gene, Required-for-Focal-BIC-Formation 1 (RBF1). RBF1 expression was induced in appressoria and IH only when the fungus was inoculated to living plant tissues. Long-term successive imaging of live cell fluorescence revealed that the expression of RBF1 was upregulated each time the fungus crossed a host cell wall. Like other symplastic effector proteins of the rice blast fungus, Rbf1 accumulated in the biotrophic interfacial complex (BIC) and was translocated into the rice cytoplasm. RBF1-knockout mutants (Δrbf1) were severely deficient in their virulence to rice leaves, but were capable of proliferating in abscisic acid-treated or salicylic acid-deficient rice plants. In rice leaves, Δrbf1 inoculation caused necrosis and induced defense-related gene expression, which led to a higher level of diterpenoid phytoalexin accumulation than the wild-type fungus did. Δrbf1 showed unusual differentiation of IH and dispersal of the normally BIC-focused effectors around the short primary hypha and the first bulbous cell. In the Δrbf1-invaded cells, symplastic effectors were still translocated into rice cells but with a lower efficiency. These data indicate that RBF1 is a virulence gene essential for the focal BIC formation, which is critical for the rice blast fungus to suppress host immune responses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Proteínas Fúngicas / Magnaporthe / Micoses Idioma: En Revista: PLoS Pathog Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Proteínas Fúngicas / Magnaporthe / Micoses Idioma: En Revista: PLoS Pathog Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão
...