Your browser doesn't support javascript.
loading
Biomechanics of the human intervertebral disc: A review of testing techniques and results.
Newell, N; Little, J P; Christou, A; Adams, M A; Adam, C J; Masouros, S D.
Afiliação
  • Newell N; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom. Electronic address: n.newell09@imperial.ac.uk.
  • Little JP; Paediatric Spine Research Group, IHBI at Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia.
  • Christou A; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
  • Adams MA; Centre for Applied Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, United Kingdom.
  • Adam CJ; Paediatric Spine Research Group, IHBI at Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia.
  • Masouros SD; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
J Mech Behav Biomed Mater ; 69: 420-434, 2017 05.
Article em En | MEDLINE | ID: mdl-28262607
Many experimental testing techniques have been adopted in order to provide an understanding of the biomechanics of the human intervertebral disc (IVD). The aim of this review article is to amalgamate results from these studies to provide readers with an overview of the studies conducted and their contribution to our current understanding of the biomechanics and function of the IVD. The overview is presented in a way that should prove useful to experimentalists and computational modellers. Mechanical properties of whole IVDs can be assessed conveniently by testing 'motion segments' comprising two vertebrae and the intervening IVD and ligaments. Neural arches should be removed if load-sharing between them and the disc is of no interest, and specimens containing more than two vertebrae are required to study 'adjacent level' effects. Mechanisms of injury (including endplate fracture and disc herniation) have been studied by applying complex loading at physiologically-relevant loading rates, whereas mechanical evaluations of surgical prostheses require slower application of standardised loading protocols. Results can be strongly influenced by the testing environment, preconditioning, loading rate, specimen age and degeneration, and spinal level. Component tissues of the disc (anulus fibrosus, nucleus pulposus, and cartilage endplates) have been studied to determine their material properties, but only the anulus has been thoroughly evaluated. Animal discs can be used as a model of human discs where uniform non-degenerate specimens are required, although differences in scale, age, and anatomy can lead to problems in interpretation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Intervertebral Tipo de estudo: Systematic_reviews Limite: Animals / Humans Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Intervertebral Tipo de estudo: Systematic_reviews Limite: Animals / Humans Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article
...