Your browser doesn't support javascript.
loading
In-Situ Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode.
Lee, Jin-Wook; Choi, Yung Ji; Yang, June-Mo; Ham, Sujin; Jeon, Sang Kyu; Lee, Jun Yeob; Song, Young-Hyun; Ji, Eun Kyung; Yoon, Dae-Ho; Seo, Seongrok; Shin, Hyunjung; Han, Gil Sang; Jung, Hyun Suk; Kim, Dongho; Park, Nam-Gyu.
Afiliação
  • Choi YJ; Department of Chemistry, Yonsei University , Seoul 120-749, Korea.
  • Ham S; Department of Chemistry, Yonsei University , Seoul 120-749, Korea.
  • Han GS; Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.
  • Kim D; Department of Chemistry, Yonsei University , Seoul 120-749, Korea.
ACS Nano ; 11(3): 3311-3319, 2017 03 28.
Article em En | MEDLINE | ID: mdl-28278375
ABSTRACT
Excellent color purity with a tunable band gap renders organic-inorganic halide perovskite highly capable of performing as light-emitting diodes (LEDs). Perovskite nanocrystals show a photoluminescence quantum yield exceeding 90%, which, however, decreases to lower than 20% upon formation of a thin film. The limited photoluminescence quantum yield of a perovskite thin film has been a formidable obstacle for development of highly efficient perovskite LEDs. Here, we report a method for highly luminescent MAPbBr3 (MA = CH3NH3) nanocrystals formed in situ in a thin film based on nonstoichiometric adduct and solvent-vacuum drying approaches. Excess MABr with respect to PbBr2 in precursor solution plays a critical role in inhibiting crystal growth of MAPbBr3, thereby forming nanocrystals and creating type I band alignment with core MAPbBr3 by embedding MAPbBr3 nanocrystals in the unreacted wider band gap MABr. A solvent-vacuum drying process was developed to preserve nanocrystals in the film, which realizes a fast photoluminescence lifetime of 3.9 ns along with negligible trapping processes. Based on a highly luminescent nanocrystalline MAPbBr3 thin film, a highly efficient green LED with a maximum external quantum efficiency of 8.21% and a current efficiency of 34.46 cd/A was demonstrated.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2017 Tipo de documento: Article
...