Your browser doesn't support javascript.
loading
Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice.
Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi.
Afiliação
  • Nakagawa Y; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
  • Sakuma T; Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan tetsushi-sakuma@hiroshima-u.ac.jp.
  • Nishimichi N; Cell-Matrix Frontier Laboratory, Health Administration Center, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan.
  • Yokosaki Y; Cell-Matrix Frontier Laboratory, Health Administration Center, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan.
  • Takeo T; Clinical Genetics, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan.
  • Nakagata N; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
  • Yamamoto T; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
Biol Open ; 6(5): 706-713, 2017 May 15.
Article em En | MEDLINE | ID: mdl-28396487
ABSTRACT
Robust reproductive engineering techniques are required for the efficient and rapid production of genetically modified mice. We have reported the efficient production of genome-edited mice using reproductive engineering techniques, such as ultra-superovulation, in vitro fertilization (IVF) and vitrification/warming of zygotes. We usually use vitrified/warmed fertilized oocytes created by IVF for microinjection because of work efficiency and flexible scheduling. Here, we investigated whether the culture time of zygotes before microinjection influences the efficiency of producing knock-in mice. Knock-in mice were generated using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system and single-stranded oligodeoxynucleotide (ssODN) or PITCh (Precise Integration into Target Chromosome) system, a method of integrating a donor vector assisted by microhomology-mediated end-joining. The cryopreserved fertilized oocytes were warmed, cultured for several hours and microinjected at different timings. Microinjection was performed with Cas9 protein, guide RNA(s), and an ssODN or PITCh donor plasmid for the ssODN knock-in and the PITCh knock-in, respectively. Different production efficiencies of knock-in mice were observed by changing the timing of microinjection. Our study provides useful information for the CRISPR-Cas9-based generation of knock-in mice.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biol Open Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biol Open Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Japão
...