Your browser doesn't support javascript.
loading
Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
Beker, Levent; Benet, Arnau; Meybodi, Ali Tayebi; Eovino, Ben; Pisano, Albert P; Lin, Liwei.
Afiliação
  • Beker L; Department of Mechanical Engineering, and Berkeley Sensor Actuator Center, University of California, Berkeley, CA, USA. lbeker@berkeley.edu.
  • Benet A; Department of Neurological Surgery, University of California, San Francisco, CA, USA.
  • Meybodi AT; Department of Neurological Surgery, University of California, San Francisco, CA, USA.
  • Eovino B; Department of Mechanical Engineering, and Berkeley Sensor Actuator Center, University of California, Berkeley, CA, USA.
  • Pisano AP; Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA.
  • Lin L; Department of Mechanical Engineering, and Berkeley Sensor Actuator Center, University of California, Berkeley, CA, USA.
Biomed Microdevices ; 19(2): 32, 2017 06.
Article em En | MEDLINE | ID: mdl-28425028
ABSTRACT
In this paper, a novel method to generate electrical energy by converting available mechanical energy from pressure fluctuations of the cerebrospinal fluid within lateral ventricles of the brain is presented. The generated electrical power can be supplied to the neural implants and either eliminate their battery need or extend the battery lifespan. A diaphragm type harvester comprised of piezoelectric material is utilized to convert the pressure fluctuations to electrical energy. The pressure fluctuations cause the diaphragm to bend, and the strained piezoelectric materials generate electricity. In the framework of this study, an energy harvesting structure having a diameter of 2.5 mm was designed and fabricated using microfabrication techniques. A 11 model of lateral ventricles was 3D-printed from raw MRI images to characterize the harvester. Experimental results show that a maximum power of 0.62 nW can be generated from the harvester under similar physical conditions in lateral ventricles which corresponds to energy density of 12.6 nW/cm2. Considering the available area within the lateral ventricles and the size of harvesters that can be built using microfabrication techniques it is possible to amplify to power up to 26 nW. As such, the idea of generating electrical energy by making use of pressure fluctuations within brain is demonstrated in this work via the 3D-printed model system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Próteses e Implantes / Encéfalo / Pressão do Líquido Cefalorraquidiano / Sistemas Microeletromecânicos Limite: Humans Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Próteses e Implantes / Encéfalo / Pressão do Líquido Cefalorraquidiano / Sistemas Microeletromecânicos Limite: Humans Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos
...