Your browser doesn't support javascript.
loading
EPR UNIFORM FIELD SIGNAL ENHANCEMENT BY DIELECTRIC TUBES IN CAVITIES.
Hyde, James S; Mett, Richard R.
Afiliação
  • Hyde JS; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plan Road, Milwaukee, WI 53226.
  • Mett RR; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plan Road, Milwaukee, WI 53226.
Appl Magn Reson ; 48(11-12): 1185-1204, 2017 Dec.
Article em En | MEDLINE | ID: mdl-29332997
The dielectric tube resonator (DTR) for EPR spectroscopy is introduced. It is defined as a metallic cylindrical TE011 microwave cavity that contains a dielectric tube centered on the axis of the cylinder. Contour plots of dimensions of the metallic cylinder to achieve resonance at 9.5 GHz are shown for quartz, sapphire, and rutile tubes as a function of wall thickness and average radius. These contour plots were developed using analytical equations and confirmed by finite element modeling. They can be used in two ways: design of the metallic cylinder for use at 9.5 GHz that incorporates a readily available tube such as a sapphire tube intended for NMR, or design of a custom procured tube for optimized performance for specific sample-size constraints. The charts extend to the limiting condition where the dielectric fills the tube. However, the structure at this limit is not a dielectric resonator due to the metal wall and does not radiate. In addition, the uniform field (UF) DTR is introduced. Development of the UF resonator starting with a dielectric tube resonator is shown. The diameter of the tube remains constant along the cavity axis, and the diameter of the cylindrical metallic enclosure increases at the ends of the cavity to satisfy the uniform field condition. This structure has advantages over the previously developed UF TE011 resonators: higher resonator efficiency parameter Λ, convenient overall size when using sapphire tubes, and higher quality data for small samples. The DTR and UF DTR structures fill the gap between free space and dielectric resonator limits in a continuous manner.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Magn Reson Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Magn Reson Ano de publicação: 2017 Tipo de documento: Article
...