Your browser doesn't support javascript.
loading
Dielectric function, critical points, and Rydberg exciton series of WSe2 monolayer.
Diware, M S; Ganorkar, S P; Park, K; Chegal, W; Cho, H M; Cho, Y J; Kim, Y D; Kim, H.
Afiliação
  • Diware MS; CeNSCMR and Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea.
J Phys Condens Matter ; 30(23): 235701, 2018 Jun 13.
Article em En | MEDLINE | ID: mdl-29714172
The complex dielectric function ([Formula: see text]) of WSe2 monolayer grown by atomic layer deposition is investigated using spectroscopic ellipsometry. Band structure parameters are obtained by standard line-shape analysis of the second-energy-derivative of [Formula: see text] spectra. The fundamental band gap is observed at 2.26 eV, corresponds to transition between valence band (VB) maximum at the K point and conduction band (CB) minimum at Q point in the Brillouin zone (BZ). Two strong so-called A and B excitonic peaks in [Formula: see text] spectra originate from vertical transitions from spin-orbit split (0.43 eV) VB to CB at K point of the BZ. Binding energies of A and B exactions are 0.71 and 0.28 eV, respectively. Well resolved five excited excitons states has been detected within the spectral region between A and B. Energy profile of the Rydberg series shows significant deviation from the hydrogenic behavior, discussed in connection with the 2D hydrogen model. Results presented here will improve our understanding about the optical response of 2D materials and will help to design better optoelectronic applications and validate theoretical considerations.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2018 Tipo de documento: Article
...