Your browser doesn't support javascript.
loading
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein.
Ding, Xinxin; Pervere, Leah M; Bascom, Carl; Bibeau, Jeffrey P; Khurana, Sakshi; Butt, Allison M; Orr, Robert G; Flaherty, Patrick J; Bezanilla, Magdalena; Vidali, Luis.
Afiliação
  • Ding X; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
  • Pervere LM; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA.
  • Bascom C; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
  • Bibeau JP; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA.
  • Khurana S; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA.
  • Butt AM; Department of Biological Sciences, Dartmouth College, Hanover, NH.
  • Orr RG; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
  • Flaherty PJ; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
  • Bezanilla M; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
  • Vidali L; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA.
PLoS Genet ; 14(5): e1007221, 2018 05.
Article em En | MEDLINE | ID: mdl-29746462
ABSTRACT
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Bryopsida / Microtúbulos / Mutação Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Marrocos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Bryopsida / Microtúbulos / Mutação Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Marrocos
...