Your browser doesn't support javascript.
loading
Deletion of Kir6.2/SUR1 potassium channels rescues diminishing of DA neurons via decreasing iron accumulation in PD.
Zhang, Qian; Li, Chengwu; Zhang, Ting; Ge, Yaping; Han, Xiaojuan; Sun, Sifan; Ding, Jianhua; Lu, Ming; Hu, Gang.
Afiliação
  • Zhang Q; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Li C; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Zhang T; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Ge Y; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Han X; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Sun S; First Clinic Medical School, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
  • Ding J; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  • Lu M; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Electronic address: lum@njmu.edu.cn.
  • Hu G; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211
Mol Cell Neurosci ; 92: 164-176, 2018 10.
Article em En | MEDLINE | ID: mdl-30171894
ABSTRACT
ATP-sensitive potassium (K-ATP) channels express in the central nervous system extensively which coupling cell metabolism and cellular electrical activity. K-ATP channels in mature substantia nigra (SN) dopaminergic (DA) neurons are composed of inwardly rectifying potassium channel (Kir) subunit 6.2 and sulfonylurea receptor 1 (SUR1). Our previous study revealed that regulating K-ATP channel exerts the protective effect on DA neurons in a mouse model of Parkinson's disease (PD). However, the detailed mechanism underlying the role of Kir6.2/K-ATP remains unclear. In the present study, we found the deletion of Kir6.2 dramatically alleviated PD-like motor dysfunction of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD model. We further found that Kir6.2 knockout selectively restored the reduction of both DA neuronal number and dopamine transmitter level in the nigrostriatal of MPTP-treated PD mice. To gain some understanding on the molecular basis of this effect, we focused on the regulation of Kir6.2 deletion on iron metabolism which is tightly associated with DA neuron damage. We found that Kir6.2 knockout suppressed the excessive iron accumulation in MPTP-treated mouse midbrain and inhibited the upregulation of ferritin light chain (FTL), which is a main intracellular iron storage protein. We probed further and found out that the deletion of Kir6.2 inhibited the excessive production of FTL via IRP-IRE regulatory system, and thereby protecting SN DA neurons against MPTP challenge. Our findings suggest that Kir6.2 plays a crucial role in the pathogenesis of PD and regulating Kir6.2/K-ATP channel may be a promising strategy for PD treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Intoxicação por MPTP / Canais de Potássio Corretores do Fluxo de Internalização / Neurônios Dopaminérgicos / Receptores de Sulfonilureias / Ferro Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Mol Cell Neurosci Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Intoxicação por MPTP / Canais de Potássio Corretores do Fluxo de Internalização / Neurônios Dopaminérgicos / Receptores de Sulfonilureias / Ferro Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Mol Cell Neurosci Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China
...