Your browser doesn't support javascript.
loading
Dendrite Suppression Membranes for Rechargeable Zinc Batteries.
ACS Appl Mater Interfaces ; 10(45): 38928-38935, 2018 Nov 14.
Article em En | MEDLINE | ID: mdl-30351899
ABSTRACT
Aqueous batteries with zinc metal anodes are promising alternatives to Li-ion batteries for grid storage because of their abundance and benefits in cost, safety, and nontoxicity. However, short cyclability due to zinc dendrite growth remains a major obstacle. Here, we report a cross-linked polyacrylonitrile (PAN)-based cation exchange membrane that is low cost and mechanically robust. Li2S3 reacts with PAN, simultaneously leading to cross-linking and formation of sulfur-containing functional groups. Hydrolysis of the membrane results in the formation of a membrane that achieves preferred cation transport and homogeneous ionic flux distribution. The separator is thin (30 µm-thick), almost 9 times stronger than hydrated Nafion, and made of low-cost materials. The membrane separator enables exceptionally long cyclability (>350 cycles) of Zn/Zn symmetric cells with low polarization and effective dendrite suppression. Our work demonstrates that the design of new separators is a fruitful pathway to enhancing the cyclability of aqueous batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article
...