Your browser doesn't support javascript.
loading
Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits.
Lakshmanan, Meiyappan; Kok, Yee Jiun; Lee, Alison P; Kyriakopoulos, Sarantos; Lim, Hsueh Lee; Teo, Gavin; Poh, Swan Li; Tang, Wen Qin; Hong, Jongkwang; Tan, Andy Hee-Meng; Bi, Xuezhi; Ho, Ying Swan; Zhang, Peiqing; Ng, Say Kong; Lee, Dong-Yup.
Afiliação
  • Lakshmanan M; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Kok YJ; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Lee AP; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Kyriakopoulos S; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Lim HL; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Teo G; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Poh SL; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Tang WQ; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Hong J; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Tan AH; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Bi X; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Ho YS; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Zhang P; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Ng SK; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
  • Lee DY; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Article em En | MEDLINE | ID: mdl-31066037
Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Singapura

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteoma / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Singapura
...