Your browser doesn't support javascript.
loading
The Unfolded Protein Response Regulates Pathogenic Development of Ustilago maydis by Rok1-Dependent Inhibition of Mating-Type Signaling.
Schmitz, Lara; Schwier, Melina Ayaka; Heimel, Kai.
Afiliação
  • Schmitz L; Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.
  • Schwier MA; Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.
  • Heimel K; Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany kheimel@gwdg.de.
mBio ; 10(6)2019 12 17.
Article em En | MEDLINE | ID: mdl-31848283
ABSTRACT
Fungal pathogens require the unfolded protein response (UPR) to maintain protein homeostasis of the endoplasmic reticulum (ER) during pathogenic development. In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the a and b mating-type loci. The UPR is specifically activated after plant penetration and required for efficient secretion of effectors and suppression of the plant defense response. The interaction between the UPR regulator Cib1 and the central developmental regulator Clp1 modulates the pathogenic program and triggers fungal colonization of the host plant. By contrast, when activated before plant penetration, the UPR interferes with fungal virulence by reducing expression of bE and bW, the central regulators of pathogenic development encoded by the b mating-type locus. Here, we show that this inhibitory effect results from UPR-mediated suppression of the pheromone response pathway upstream of the b regulatory network. UPR activity prompts dephosphorylation of the pheromone-responsive mitogen-activated protein kinase (MAPK) Kpp2, reducing activity of the pheromone response factor Prf1 that regulates expression of bE and bW Deletion of the dual specificity phosphatase rok1 fully suppressed UPR-dependent inhibition of Kpp2 phosphorylation, formation of infectious filaments, and fungal virulence. Rok1 determines the activity of mating-type signaling pathways and thus the degree of fungal virulence. We propose that UPR-dependent regulation of Rok1 aligns ER physiology with fungal aggressiveness and effector gene expression during biotrophic growth of U. maydis in the host plant.IMPORTANCE The unfolded protein response (UPR) is crucial for endoplasmic reticulum (ER) homeostasis and disease development in fungal pathogens. In the plant-pathogenic fungus Ustilago maydis, the UPR supports fungal proliferation in planta and effector secretion for plant defense suppression. In this study, we uncovered that UPR activity, which is normally restricted to the biotrophic stage in planta, inhibits mating and the formation of infectious filaments by Rok1-dependent dephosphorylation of the pheromone responsive mitogen-activated protein kinase (MAPK) Kpp2. This observation is relevant for understanding how the fungal virulence program is regulated by cellular physiology. UPR-mediated control of mating-type signaling pathways predicts that effector gene expression and the virulence potential are controlled by ER stress levels.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ustilago / Transdução de Sinais / Genes Fúngicos Tipo Acasalamento / RNA Helicases DEAD-box / Resposta a Proteínas não Dobradas Tipo de estudo: Prognostic_studies Idioma: En Revista: MBio Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ustilago / Transdução de Sinais / Genes Fúngicos Tipo Acasalamento / RNA Helicases DEAD-box / Resposta a Proteínas não Dobradas Tipo de estudo: Prognostic_studies Idioma: En Revista: MBio Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha
...