Your browser doesn't support javascript.
loading
The energetics of carbonated PuO2 surfaces affects nanoparticle morphology: a DFT+U study.
Moxon, Samuel; Symington, Adam R; Tse, Joshua S; Dawson, James; Flitcroft, Joseph M; Parker, Stephen C; Cooke, David J; Harker, Robert M; Molinari, Marco.
Afiliação
  • Moxon S; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
  • Symington AR; Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
  • Tse JS; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
  • Dawson J; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
  • Flitcroft JM; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
  • Parker SC; Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
  • Cooke DJ; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
  • Harker RM; AWE Aldermaston, Reading, RG7 4PR, UK.
  • Molinari M; Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. m.molinari@hud.ac.uk samuel.moxon@hud.ac.uk.
Phys Chem Chem Phys ; 22(15): 7728-7737, 2020 Apr 15.
Article em En | MEDLINE | ID: mdl-32191781
ABSTRACT
Radiolytic corrosion of actinide materials represent an issue for the long term storage and disposal of nuclear materials. Molecular species adsorbed at the surface of the actinides may impact the rate of radiolysis, and as the surfaces corrode, the soluble toxic and radioactive species leach into groundwater. It is therefore critical to characterise the surface composition of actinides. Here, we employ ab initio modelling to determine the surface composition of PuO2 with respect to adsorbed CO2. We found that CO2 interacts strongly with the surface forming carbonate species. By mapping the energetics of this interaction, we then calculate the temperature of desorption, finding that surface morphology has a strong impact on the adsorption of CO2, with the {100} being the most and the {111} the least affected by carbonation. Finally, we predict the effect of carbonation on the morphology of PuO2 nanoparticles as a function of temperature and pressure, finding that truncated octahedral is the preferred morphology. This modelling strategy helps characterise surface compensition and nanoparticle morphology, and we discuss the implication for radiolytically driven dispersal of material into the environment.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article
...