Your browser doesn't support javascript.
loading
Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models.
Lehmann, B C L; Henson, R N; Geerligs, L; White, S R.
Afiliação
  • Lehmann BCL; MRC Biostatistics Unit, University of Cambridge, UK; Big Data Institute, University of Oxford, UK; Department of Statistics, University of Oxford, UK. Electronic address: brieuc.lehmann@bdi.ox.ac.uk.
  • Henson RN; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
  • Geerligs L; Donders Institute for Brain, Cognition and Behaviour, Radboud University, UK.
  • Cam-Can; Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, UK.
  • White SR; MRC Biostatistics Unit, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK.
Neuroimage ; 225: 117480, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33099009
The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Teorema de Bayes / Modelos Neurológicos / Rede Nervosa Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Teorema de Bayes / Modelos Neurológicos / Rede Nervosa Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article
...