Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework.
IEEE Trans Image Process
; 30: 3167-3178, 2021.
Article
em En
| MEDLINE
| ID: mdl-33600314
Multimodal retinal imaging plays an important role in ophthalmology. We propose a content-adaptive multimodal retinal image registration method in this paper that focuses on the globally coarse alignment and includes three weakly supervised neural networks for vessel segmentation, feature detection and description, and outlier rejection. We apply the proposed framework to register color fundus images with infrared reflectance and fluorescein angiography images, and compare it with several conventional and deep learning methods. Our proposed framework demonstrates a significant improvement in robustness and accuracy reflected by a higher success rate and Dice coefficient compared with other methods.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Retina
/
Interpretação de Imagem Assistida por Computador
/
Técnicas de Diagnóstico Oftalmológico
/
Aprendizado de Máquina Supervisionado
/
Aprendizado Profundo
Limite:
Humans
Idioma:
En
Revista:
IEEE Trans Image Process
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2021
Tipo de documento:
Article