Your browser doesn't support javascript.
loading
A narrow ear canal reduces sound velocity to create additional acoustic inputs in a microscale insect ear.
Veitch, Daniel; Celiker, Emine; Aldridge, Sarah; Pulver, Christian; Soulsbury, Carl D; Jonsson, Thorin; Woodrow, Charlie; Montealegre-Z, Fernando.
Afiliação
  • Veitch D; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom.
  • Celiker E; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom; ECeliker@lincoln.ac.uk fmontealegrez@lincoln.ac.uk.
  • Aldridge S; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom.
  • Pulver C; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom.
  • Soulsbury CD; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom.
  • Jonsson T; Institute of Biology, Universitätsplatz 2, Karl-Franzens-University Graz, 8010 Graz, Austria.
  • Woodrow C; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom.
  • Montealegre-Z F; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, United Kingdom; ECeliker@lincoln.ac.uk fmontealegrez@lincoln.ac.uk.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article em En | MEDLINE | ID: mdl-33658360
Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, [Formula: see text]). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess [Formula: see text] fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Timpânica / Gryllidae / Estruturas Animais / Meato Acústico Externo / Audição Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Timpânica / Gryllidae / Estruturas Animais / Meato Acústico Externo / Audição Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido
...