Improving carvacrol bioaccessibility using core-shell carrier-systems under simulated gastrointestinal digestion.
Food Chem
; 353: 129505, 2021 Aug 15.
Article
em En
| MEDLINE
| ID: mdl-33735775
The impact of encapsulating carvacrol in chitosan-albumin based core-shell nano-carriers (NCs) on its stability and bioaccessibility was determined under simulated digestion conditions. These NCs consisted of chitosan (C) core enclosed by bovine serum albumin (BSA) shell. The mean particle size ranged from 52.4 ± 10 nm to 203 ± 6 nm and zeta-potential from + 21 ± 3.6 to -18 ± 2.7 mV. The size and charge were significantly modified after the protein-shell formation around the polysaccharide-core. Core-shell NCs were more stable, with less aggregation under simulated gastrointestinal conditions than C-NCs, presumably due to greater steric repulsion. Likewise, core-shell NCs were observed relatively more stabilized in the intestinal phase than gastric phase. The bioaccessibility of carvacrol was enhanced significantly when it was encapsulated in the core-shell NCs. These findings imply that C-BSA based core-shell NCs might be an efficient means of encapsulating, protecting and delivering hydrophobic bioactive compounds for applications in functional foods.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Nanopartículas
/
Cimenos
Limite:
Animals
Idioma:
En
Revista:
Food Chem
Ano de publicação:
2021
Tipo de documento:
Article