Your browser doesn't support javascript.
loading
A prognostic dynamic model applicable to infectious diseases providing easily visualized guides: a case study of COVID-19 in the UK.
Zhang, Yuxuan; Gong, Chen; Li, Dawei; Wang, Zhi-Wei; Pu, Shengda D; Robertson, Alex W; Yu, Hong; Parrington, John.
Afiliação
  • Zhang Y; Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
  • Gong C; Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
  • Li D; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
  • Wang ZW; Department of Physics, University of California, San Diego, La Jolla, CA, USA.
  • Pu SD; Computer Science, University of York, York, YO10 5GH, UK.
  • Robertson AW; College of Physics, Jilin University, Changchun, 130012, People's Republic of China.
  • Yu H; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
  • Parrington J; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
Sci Rep ; 11(1): 8412, 2021 04 16.
Article em En | MEDLINE | ID: mdl-33863958
ABSTRACT
A reasonable prediction of infectious diseases' transmission process under different disease control strategies is an important reference point for policy makers. Here we established a dynamic transmission model via Python and realized comprehensive regulation of disease control measures. We classified government interventions into three categories and introduced three parameters as descriptions for the key points in disease control, these being intraregional growth rate, interregional communication rate, and detection rate of infectors. Our simulation predicts the infection by COVID-19 in the UK would be out of control in 73 days without any interventions; at the same time, herd immunity acquisition will begin from the epicentre. After we introduced government interventions, a single intervention is effective in disease control but at huge expense, while combined interventions would be more efficient, among which, enhancing detection number is crucial in the control strategy for COVID-19. In addition, we calculated requirements for the most effective vaccination strategy based on infection numbers in a real situation. Our model was programmed with iterative algorithms, and visualized via cellular automata; it can be applied to similar epidemics in other regions if the basic parameters are inputted, and is able to synthetically mimic the effect of multiple factors in infectious disease control.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 4_TD Problema de saúde: 1_doencas_nao_transmissiveis / 1_doencas_transmissiveis / 2_enfermedades_transmissibles / 2_muertes_prematuras_enfermedades_notrasmisibles / 4_pneumonia Assunto principal: COVID-19 / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 4_TD Problema de saúde: 1_doencas_nao_transmissiveis / 1_doencas_transmissiveis / 2_enfermedades_transmissibles / 2_muertes_prematuras_enfermedades_notrasmisibles / 4_pneumonia Assunto principal: COVID-19 / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido
...