Your browser doesn't support javascript.
loading
Precision Cut Lung Slices as an Efficient Tool for Ex vivo Pulmonary Vessel Structure and Contractility Studies.
Klouda, Timothy; Kim, Hyunbum; Kim, Jiwon; Visner, Gary; Yuan, Ke.
Afiliação
  • Klouda T; Divisions of Pulmonary Medicine, Boston Children's Hospital.
  • Kim H; Divisions of Pulmonary Medicine, Boston Children's Hospital.
  • Kim J; Divisions of Pulmonary Medicine, Boston Children's Hospital.
  • Visner G; Divisions of Pulmonary Medicine, Boston Children's Hospital.
  • Yuan K; Divisions of Pulmonary Medicine, Boston Children's Hospital; ke.yuan@childrens.harvard.edu.
J Vis Exp ; (171)2021 05 24.
Article em En | MEDLINE | ID: mdl-34096923
The visualization of murine lung tissue provides valuable structural and cellular information regarding the underlying airway and vasculature. However, the preservation of pulmonary vessels that truly represents physiological conditions still presents challenges. In addition, the delicate configuration of murine lungs result in technical challenges preparing samples for high-quality images that preserve both cellular composition and architecture. Similarly, cellular contractility assays can be performed to study the potential of cells to respond to vasoconstrictors in vitro, but these assays do not reproduce the complex environment of the intact lung. In contrast to these technical issues, the precision-cut lung slice (PCLS) method can be applied as an efficient alternative to visualize lung tissue in three dimensions without regional bias and serve as a live surrogate contractility model for up to 10 days. Tissue prepared using PCLS has preserved structure and spatial orientation, making it ideal to study disease processes ex vivo. The location of endogenous tdTomato-labeled cells in PCLS harvested from an inducible tdTomato reporter murine model can be successfully visualized by confocal microscopy. After exposure to vasoconstrictors, PCLS demonstrates the preservation of both vessel contractility and lung structure, which can be captured by a time-lapse module. In combination with the other procedures, such as western blot and RNA analysis, PCLS can contribute to the comprehensive understanding of signaling cascades that underlie a wide variety of disorders and lead to a better understanding of the pathophysiology in pulmonary vascular diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pulmão / Pneumopatias Limite: Animals Idioma: En Revista: J Vis Exp Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pulmão / Pneumopatias Limite: Animals Idioma: En Revista: J Vis Exp Ano de publicação: 2021 Tipo de documento: Article
...