Your browser doesn't support javascript.
loading
Untangling the influence of biotic and abiotic factors on habitat selection by a tropical rodent.
Ward-Fear, Georgia; Brown, Gregory P; Pearson, David; Shine, Richard.
Afiliação
  • Ward-Fear G; School of Biological Sciences, Macquarie University, Office G17, Building 205B Culloden Road, Sydney, NSW, 2109, Australia. georgia.ward-fear@mq.edu.au.
  • Brown GP; School of Life and Environmental Sciences , University of Sydney , Sydney, NSW , 2006 , Australia. georgia.ward-fear@mq.edu.au.
  • Pearson D; School of Biological Sciences, Macquarie University, Office G17, Building 205B Culloden Road, Sydney, NSW, 2109, Australia.
  • Shine R; Western Australian Department of Parks and Wildlife, Waneroo, WA , 6065 , Australia.
Sci Rep ; 11(1): 12895, 2021 06 18.
Article em En | MEDLINE | ID: mdl-34145308
ABSTRACT
Understanding how animal populations respond to environmental factors is critical because large-scale environmental processes (e.g., habitat fragmentation, climate change) are impacting ecosystems at unprecedented rates. On an overgrazed floodplain in north-western Australia, a native rodent (Pale Field Rat, Rattus tunneyi) constructs its burrows primarily beneath an invasive tree (Chinee Apple, Ziziphus mauritiana) rather than native trees. The dense thorny foliage of the Chinee Apple may allow high rat densities either because of abiotic effects (shade, in a very hot environment) or biotic processes (protection from trampling and soil compaction by feral horses, and/or predation). To distinguish between these hypotheses, we manipulated Chinee Apple foliage to modify biotic factors (access to horses and predators) but not shade levels. We surveyed the rat population with Elliott traps under treatment and control trees and in the open woodland, in two seasons (the breeding season-January, and the nesting season-May). In the breeding season, we ran giving-up density experiments (GUD) with food trays, to assess the perceived risk of predation by rats across our three treatments. Selective trimming of foliage did not affect thermal regimes underneath the trees but did allow ingress of horses and we observed two collapsed burrows as a consequence (although long term impacts of horses were not measured). The perceived predation risk also increased (GUD values at food trays increased) and was highest in the open woodland. Our manipulation resulted in a shift in rat sex ratios (indicating female preference for breeding under control but not foliage-trimmed trees) and influenced rat behaviour (giving-up densities increased; large dominant males inhabited the control but not treatment trees). Our data suggest that the primary benefit of the Chinee Apple tree to native rodents lies in physical protection from predators and (potentially) feral horses, rather than in providing cooler microhabitat.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_quimicos_contaminacion Assunto principal: Roedores / Ecossistema / Meio Ambiente Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_quimicos_contaminacion Assunto principal: Roedores / Ecossistema / Meio Ambiente Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália
...