Your browser doesn't support javascript.
loading
A systematic high-throughput phenotyping assay for sugarcane stalk quality characterization by near-infrared spectroscopy.
Wang, Maoyao; Li, Xinru; Shen, Yinjuan; Adnan, Muhammad; Mao, Le; Lu, Pan; Hu, Qian; Jiang, Fuhong; Khan, Muhammad Tahir; Deng, Zuhu; Chen, Baoshan; Huang, Jiangfeng; Zhang, Muqing.
Afiliação
  • Wang M; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Li X; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Shen Y; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Adnan M; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Mao L; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Lu P; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Hu Q; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Jiang F; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Khan MT; Sugarcane Biotechnology Group, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan.
  • Deng Z; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Chen B; National Engineering Technology Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
  • Huang J; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
  • Zhang M; Guangxi Key Laboratory of Sugarcane Biology, Sugar Industry Collaborative Innovation Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China. hjfjiayoua@yeah.net.
Plant Methods ; 17(1): 76, 2021 Jul 13.
Article em En | MEDLINE | ID: mdl-34256789
BACKGROUND: Sugarcane (Saccharum officinarum L.) is an economically important crop with stalks as the harvest organs. Improvement in stalk quality is deemed a promising strategy for enhancing sugarcane production. However, the lack of efficient approaches for systematic evaluation of sugarcane germplasm largely limits improvements in stalk quality. This study is designed to develop a systematic near-infrared spectroscopy (NIRS) assay for high-throughput phenotyping of sugarcane stalk quality, thereby providing a feasible solution for precise evaluation of sugarcane germplasm. RESULTS: A total of 628 sugarcane accessions harvested at different growth stages before and after maturity were employed to take a high-throughput assay to determine sugarcane stalk quality. Based on high-performance anion chromatography (HPAEC-PAD), large variations in sugarcane stalk quality were detected in terms of biomass composition and the corresponding fundamental ratios. Online and offline NIRS modeling strategies were applied for multiple purpose calibration with partial least square (PLS) regression analysis. Consequently, 25 equations were generated with excellent determination coefficients (R2) and ratio performance deviation (RPD) values. Notably, for some observations, RPD values as high as 6.3 were observed, which indicated their exceptional performance and predictive capability. CONCLUSIONS: This study provides a feasible method for consistent and high-throughput assessment of stalk quality in terms of moisture, soluble sugar, insoluble residue and the corresponding fundamental ratios. The proposed method permits large-scale screening of optimal sugarcane germplasm for sugarcane stalk quality breeding and beyond.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Methods Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Methods Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China
...