Your browser doesn't support javascript.
loading
Third-generation sequencing and metabolome analysis reveal candidate genes and metabolites with altered levels in albino jackfruit seedlings.
Meng, Xiangxu; Xu, Jiahong; Zhang, Maoning; Du, Ruyue; Zhao, Wenxiu; Zeng, Qing; Tu, Zhihua; Chen, Jinhui; Chen, Beibei.
Afiliação
  • Meng X; Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Xu J; Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Zhang M; Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Du R; Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Zhao W; School of Agricultural Sciences, Zhengzhou University, 450001, Zhengzhou, People's Republic of China.
  • Zeng Q; Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Tu Z; Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Chen J; Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
  • Chen B; Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, School of Forestry, Hainan University, 570228, Haikou, People's Republic of China.
BMC Genomics ; 22(1): 543, 2021 Jul 16.
Article em En | MEDLINE | ID: mdl-34271866
BACKGROUND: Most plants rely on photosynthesis; therefore, albinism in plants with leaves that are white instead of green causes slow growth, dwarfing, and even death. Although albinism has been characterized in annual model plants, little is known about albino trees. Jackfruit (Artocarpus heterophyllus) is an important tropical fruit tree species. To gain insight into the mechanisms underlying the differential growth and development between albino jackfruit mutants and green seedlings, we analyzed root, stem, and leaf tissues by combining PacBio single-molecule real-time (SMRT) sequencing, high-throughput RNA-sequencing (RNA-seq), and metabolomic analysis. RESULTS: We identified 8,202 differentially expressed genes (DEGs), including 225 genes encoding transcription factors (TFs), from 82,572 full-length transcripts. We also identified 298 significantly changed metabolites (SCMs) in albino A. heterophyllus seedlings from a set of 692 metabolites in A. heterophyllus seedlings. Pathway analysis revealed that these DEGs were highly enriched in metabolic pathways such as 'photosynthesis', 'carbon fixation in photosynthetic organisms', 'glycolysis/gluconeogenesis', and 'TCA cycle'. Analysis of the metabolites revealed 76 SCMs associated with metabolic pathways in the albino mutants, including L-aspartic acid, citric acid, succinic acid, and fumaric acid. We selected 225 differentially expressed TF genes, 333 differentially expressed metabolic pathway genes, and 76 SCMs to construct two correlation networks. Analysis of the TF-DEG network suggested that basic helix-loop-helix (bHLH) and MYB-related TFs regulate the expression of genes involved in carbon fixation and energy metabolism to affect light responses or photomorphogenesis and normal growth. Further analysis of the DEG-SCM correlation network and the photosynthetic carbon fixation pathway suggested that NAD-ME2 (encoding a malic enzyme) and L-aspartic acid jointly inhibit carbon fixation in the albino mutants, resulting in reduced photosynthetic efficiency and inhibited plant growth. CONCLUSIONS: Our preliminarily screening identified candidate genes and metabolites specifically affected in albino A. heterophyllus seedlings, laying the foundation for further study of the regulatory mechanism of carbon fixation during photosynthesis and energy metabolism. In addition, our findings elucidate the way genes and metabolites respond in albino trees.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_endocrine_disorders / 6_skin_diseases Assunto principal: Albinismo / Artocarpus Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_endocrine_disorders / 6_skin_diseases Assunto principal: Albinismo / Artocarpus Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article
...