Boosting the surface oxygen activity for high performance Iron-based perovskite oxide.
Sci Total Environ
; 795: 148904, 2021 Nov 15.
Article
em En
| MEDLINE
| ID: mdl-34328951
Surface oxygen activities always play an important role in various heterogeneous reaction processes. In this study, the surface oxygen activity of studied perovskite oxides is greatly enhanced after the composition and morphology are tuned. It is worth noting that the surface oxygen activity is enhanced correspondingly, accompanied by higher surface area, better reducibility, and superior low-temperature reactivity of studied catalysts. The sample introduced with nickel atom and nanorods structure possesses higher surface oxygen activity and vacancies with superior performance including T10 at 221 °C and T90 at 243 °C, nearly 90 °C elevations. Double perovskite oxides, especially with nanorods structure are verified to be composed of more surface active oxygen, which could be related to low-temperature redox ability and superior oxygen vacancies. Based on the DFT calculation, introducing nickel element is confirmed to be able to efficiently boost the generation of oxygen vacancies and adsorption of oxygen molecular, in accord with the analysis of characterization. To sum up, the strategy of introducing the nickel atom and nanorods structure could effectively tune the surface oxygen activity and generate more oxygen vacancies, which would be beneficial to the catalytic performance of toluene catalytic oxidation correspondingly.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Total Environ
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China