Your browser doesn't support javascript.
loading
Inhibition of Fatty Acid Synthesis Aggravates Brain Injury, Reduces Blood-Brain Barrier Integrity and Impairs Neurological Recovery in a Murine Stroke Model.
Janssen, Lisa; Ai, Xiaoyu; Zheng, Xuan; Wei, Wei; Caglayan, Ahmet B; Kilic, Ertugrul; Wang, Ya-Chao; Hermann, Dirk M; Venkataramani, Vivek; Bähr, Mathias; Doeppner, Thorsten R.
Afiliação
  • Janssen L; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
  • Ai X; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
  • Zheng X; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
  • Wei W; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
  • Caglayan AB; Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.
  • Kilic E; Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.
  • Wang YC; The Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
  • Hermann DM; Department of Neurology, University of Duisburg-Essen, Essen, Germany.
  • Venkataramani V; Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany.
  • Bähr M; Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
  • Doeppner TR; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
Front Cell Neurosci ; 15: 733973, 2021.
Article em En | MEDLINE | ID: mdl-34483846
Inhibition of fatty acid synthesis (FAS) stimulates tumor cell death and reduces angiogenesis. When SH-SY5Y cells or primary neurons are exposed to hypoxia only, inhibition of FAS yields significantly enhanced cell injury. The pathophysiology of stroke, however, is not only restricted to hypoxia but also includes reoxygenation injury. Hence, an oxygen-glucose-deprivation (OGD) model with subsequent reoxygenation in both SH-SY5Y cells and primary neurons as well as a murine stroke model were used herein in order to study the role of FAS inhibition and its underlying mechanisms. SH-SY5Y cells and cortical neurons exposed to 10 h of OGD and 24 h of reoxygenation displayed prominent cell death when treated with the Acetyl-CoA carboxylase inhibitor TOFA or the fatty acid synthase inhibitor cerulenin. Such FAS inhibition reduced the reduction potential of these cells, as indicated by increased NADH2 +/NAD+ ratios under both in vitro and in vivo stroke conditions. As observed in the OGD model, FAS inhibition also resulted in increased cell death in the stroke model. Stroke mice treated with cerulenin did not only display increased brain injury but also showed reduced neurological recovery during the observation period of 4 weeks. Interestingly, cerulenin treatment enhanced endothelial cell leakage, reduced transcellular electrical resistance (TER) of the endothelium and contributed to poststroke blood-brain barrier (BBB) breakdown. The latter was a consequence of the activated NF-κB pathway, stimulating MMP-9 and ABCB1 transporter activity on the luminal side of the endothelium. In conclusion, FAS inhibition aggravated poststroke brain injury as consequence of BBB breakdown and NF-κB-dependent inflammation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_brain_nervous_system_cancer / 6_cerebrovascular_disease Idioma: En Revista: Front Cell Neurosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_brain_nervous_system_cancer / 6_cerebrovascular_disease Idioma: En Revista: Front Cell Neurosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha
...