Your browser doesn't support javascript.
loading
Exhaled volatile organic compounds and lung microbiome in COPD: a pilot randomised controlled trial.
Mohan, Divya; Keir, Holly R; Richardson, Hollian; Mayhew, David; Boyer, Joseph; van der Schee, Marc P; Allsworth, Max D; Miller, Bruce E; Tal-Singer, Ruth; Chalmers, James D.
Afiliação
  • Mohan D; GSK R&D, Collegeville, PA, USA.
  • Keir HR; Ninewells Clinical Research Centre, University of Dundee, Dundee, UK.
  • Richardson H; Ninewells Clinical Research Centre, University of Dundee, Dundee, UK.
  • Mayhew D; GSK R&D, Collegeville, PA, USA.
  • Boyer J; GSK R&D, Collegeville, PA, USA.
  • van der Schee MP; Owlstone Medical, Cambridge, UK.
  • Allsworth MD; Owlstone Medical, Cambridge, UK.
  • Miller BE; GSK R&D, Collegeville, PA, USA.
  • Tal-Singer R; GSK R&D, Collegeville, PA, USA.
  • Chalmers JD; Ninewells Clinical Research Centre, University of Dundee, Dundee, UK.
ERJ Open Res ; 7(4)2021 Oct.
Article em En | MEDLINE | ID: mdl-34616836
BACKGROUND: Breath analysis is a burgeoning field, with interest in volatile organic compounds (VOCs) as a noninvasive diagnostic tool or an outcome measure, but no randomised controlled trials (RCTs) have yet evaluated this technology in a clinical trial longitudinally. In a pilot RCT, our exploratory objectives were feasibility of measuring VOCs via multiple techniques, assessing relationships between VOCs and Haemophilus colonisation and whether CXCR2 antagonism with danirixin altered lung microbiome composition in individuals with COPD. METHOD: 43 participants had VOCs and sputum biomarkers evaluated. VOCs and induced sputum were collected after 6 h of fasting at screening and at days 1, 7 and 14. VOCs were analysed via gas chromatography mass spectrometry (GC-MS), field asymmetric ion mobility spectrometry (FAIMS) and eNose. The primary outcome for these analyses was the relationship between VOCs and Haemophilus abundance determined by 16S rRNA sequencing. RESULTS: A joint-effects model demonstrated a modest relationship between four exhaled VOCs and Haemophilus relative abundance (R2=0.55) measured only by GC-MS, but not as measured using gas chromtaography FAIMS or eNose. There was considerable variability in absolute quantities of individual VOCs longitudinally. CONCLUSIONS: VOC measurement in clinical trials to identify subsets of COPD is feasible, but assessment of new VOC technologies must include concurrent GC-MS validation. Further work to standardise collection of VOCs and measuring a background or "housekeeper" VOC is required to understand and normalise individual VOC quantities.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: ERJ Open Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: ERJ Open Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos
...