Your browser doesn't support javascript.
loading
A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al2O3: Structural Optimization and Enhanced Catalytic Activity.
Zhao, Shuaiqi; Lin, Jiajin; Wu, Peng; Ye, Changchun; Li, Yifei; Li, Anqi; Jin, Xiaojing; Zhao, Yun; Chen, Guangxu; Qiu, Yongcai; Ye, Daiqi.
Afiliação
  • Zhao S; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Lin J; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Wu P; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Ye C; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Li Y; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Li A; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Jin X; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Zhao Y; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Chen G; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Qiu Y; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Ye D; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510006, China.
ACS Appl Mater Interfaces ; 13(41): 48764-48773, 2021 Oct 20.
Article em En | MEDLINE | ID: mdl-34633806
ABSTRACT
A catalyst with high-entropy oxide (HEO)-stabilized single-atom Pt can afford low-temperature activity for catalytic oxidation and remarkable durability even under harsh conditions. However, HEO is easy to harden during sintering, which results in a few defective sites for anchoring single-atom metals. Herein, we present a sol-gel-assisted mechanical milling strategy to achieve a single-atom catalyst of Pt-HEO/Al2O3. The strong interaction between HEO and Al2O3 effectively inhibits the growth of HEO microparticles, which leads to generation of more surface defects because of the nanoscale effect. Meanwhile, another strong interaction between Pt and HEO stabilizes single-atom Pt on HEO. Temperature-programmed techniques further verify that the reactivity of surface lattice oxygen species is enhanced because of the Pt-O-M bonds on the surface of HEO. Unlike conventional single-atom Pt catalysts, Pt-HEO/Al2O3 as a heterogeneous catalyst not only exhibits superior stability against hydrothermal aging but also presents long-term reaction stability for CO catalytic oxidation, which exceeds 540 h. The present work opens a new door for rational design of hydrothermally stable single-atom Pt catalysts, which are highly promising in practical applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China
...