Your browser doesn't support javascript.
loading
Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission.
Han, Lanfang; Chen, Liying; Li, Detian; Ji, Yang; Feng, Yuanyuan; Feng, Yanfang; Yang, Zhifeng.
Afiliação
  • Han L; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
  • Chen L; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
  • Li D; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu
  • Ji Y; College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
  • Feng Y; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu
  • Feng Y; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu
  • Yang Z; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Environ Pollut ; 292(Pt B): 118386, 2022 Jan 01.
Article em En | MEDLINE | ID: mdl-34678391
ABSTRACT
Microplastic (MP) contamination is ubiquitous in agricultural soils. As a cost-effective soil amendment, biochar (BC) often coincides with MP exposure. However, little research has been conducted regarding the independent and combined effects of MPs and BC on the soil microbiome and N2O/CH4 emissions. Therefore, in this study, polyethylene terephthalate (PET) and wheat straw-derived BC were used, respectively, as representative MP and BC during an entire rice growth period. The high-throughput sequencing results showed that PET alone lowered bacterial diversity by 26.7%, while PET and BC co-existence did not induce apparent change. The relative abundances of some microbes (e.g., Cyanobacteria, Verrucomicrobia, and Bacteroidetes) that are associated with C and N cycling were changed at the phylum and class levels by all the treatments. In comparison with the control, the treatment of BC, PET, and their co-existence reduced the cumulative CH4 emissions by 50%, 53%, and 61%, respectively. The higher mitigation by BC + PET may be the result of higher soil Eh and a consequently lower methanogenesis functional gene mcrA abundance in the treated soils. In addition, BC and PET alone, as well as their combined treatment, increased the abundance of nitrification genes, enhancing the soil nitrification process. However, the relative contribution of the nitrification process to N2O emission was possibly lower than that of denitrification, in which the N2O reductase gene nosZ was found to be the primary gene regulating N2O emissions. BC alone increased nosZ abundance by 42.3%, thereby showing the potential in suppressing N2O emission. In contrast, when BC was co-added with PET, the nosZ abundance lowered possibly because of increased soil aeration, and thus its cumulative N2O emission was 38% higher than the BC treatment. Overall, these results demonstrated that BC and PET function differently in soil ecosystems when they coexisted.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Gases de Efeito Estufa / Microbiota Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Gases de Efeito Estufa / Microbiota Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China
...