Your browser doesn't support javascript.
loading
Biochar-supported starch/chitosan-stabilized nano-iron sulfide composites for the removal of lead ions and nitrogen from aqueous solutions.
Wang, Hai; Liu, Renrong; Chen, Qian; Mo, Yiwei; Zhang, Yaohong.
Afiliação
  • Wang H; School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang, PR China.
  • Liu R; School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang, PR China.
  • Chen Q; School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang, PR China.
  • Mo Y; School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang, PR China.
  • Zhang Y; School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang, PR China. Electronic address: zhangyhsxu@126.com.
Bioresour Technol ; 347: 126700, 2022 Mar.
Article em En | MEDLINE | ID: mdl-35033641
ABSTRACT
Novel materials that nano-FeS and starch (or chitosan) loaded on peanut shells biochar(Starch-FeS@PSB and Chitosan-FeS@PSB) were prepared and applied for removal of Pb(II) and nitrogen(NO3-N and NH4-N) in wastewater. It showed that Starch-FeS@PSB and Chitosan-FeS@PSB had excellent absorptive effects compared with PSB. The maximum adsorption capacity of Pb(II) by Starch-FeS@PSB and Chitosan-FeS@PSB reached 91.74 mg/g, 98.04 mg/g, respectively. Absorption of Pb(II) by Starch-FeS@PSB and Chitosan-FeS@PSB were controlled by monolayer chemisorption. Mechanism studies showed that complexation, electrostatic attraction, REDOX and physical absorption happened on the adsorbent surface. In addition, the maximum adsorption capacity of NO3-N and NH4-N by Starch-FeS@PSB and Chitosan-FeS@PSB reached 16.89 mg/g, 15.65 mg/g, and 18.45 mg/g, 18.28 mg/g, respectively. Absorption of N by Starch-FeS@PSB and Chitosan-FeS@PSB were controlled by multilayer chemisorption. Mechanism studies showed that complexation, electrostatic attraction and physical absorption happened on the adsorbent surface. Starch-FeS@PSB and Chitosan-FeS@PSB can be utilized in Pb(II) and N wastewater treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Quitosana Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Quitosana Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article
...