Your browser doesn't support javascript.
loading
A stepwise docking molecular dynamics approach for simulating antibody recognition with substantial conformational changes.
Huang, Yang; Li, Zizhen; Hong, Qiyang; Zhou, Lizhi; Ma, Yue; Hu, Yisha; Xin, Jiabao; Li, Tingting; Kong, Zhibo; Zheng, Qingbing; Chen, Yixin; Zhao, Qinjian; Gu, Ying; Zhang, Jun; Wang, Yingbin; Yu, Hai; Li, Shaowei; Xia, Ningshao.
Afiliação
  • Huang Y; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Li Z; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Hong Q; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Zhou L; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Ma Y; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Hu Y; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Xin J; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Li T; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Kong Z; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Zheng Q; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Chen Y; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Zhao Q; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Gu Y; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Zhang J; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Wang Y; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Yu H; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
  • Li S; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
  • Xia N; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China.
Comput Struct Biotechnol J ; 20: 710-720, 2022.
Article em En | MEDLINE | ID: mdl-35198128
ABSTRACT
Conformational changes or rearrangements are common events during inter-biomolecular recognition. Tracking these changes are essential for exploring the allosteric mechanism and it is usually achieved by molecular dynamics simulation in silico. We previously identified a broad-neutralizing antibody against H5 influenza virus, 13D4, and solved the crystal structures of the free 13D4 Fab and its complex with hemagglutinin (HA). Structural comparison of the unbound and bound 13D4 Fabs showed that the heavy chain complementarity-determining region 3 (HCDR3) undergoes a substantial conformational rearrangement when it recognizes the receptor-binding site (RBS). Here, we used molecular dynamics (MD) to simulate the conformational changes that occur during antibody recognition. We showed that neither conventional MD nor steered MD could recapitulate the loop fitting of the RBS structure contour. Consequently, to simulate these challenging conformational changes, we engaged a stepwise docking MD method that allowed for the gradual docking of the ligand to receptor. This new method recapitulates the bound shape of the HCDR3 and provides the best approximation of the shape rendered by the co-crystal structure, with an RMSD of 0.926 Å. This strategy affords a flexible MD approach for simulating complicated conformational changes that occur during molecular recognition, and helps to provide an understanding of the involved allosteric mechanism.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China
...