A Selective Targeting Anchor Strategy Affords Efficient and Stable Ideal-Bandgap Perovskite Solar Cells.
Adv Mater
; 34(18): e2110241, 2022 May.
Article
em En
| MEDLINE
| ID: mdl-35230736
Mixed lead-tin perovskite solar cells (LTPSCs) with an ideal bandgap are demonstrated as a promising candidate to reach higher power conversion efficiency (PCE) than their Pb-counterparts. Herein, a Br-free mixed lead-tin perovskite material, FA0.8 MA0.2 Pb0.8 Sn0.2 I3 , with a bandgap of 1.33 eV, as a perovskite absorber, is selected. Through density functional theory calculations and optoelectronic techniques, it is demonstrated that both Pb- and Sn-related A-site vacancies are pushed into deeper energetic depth, causing severe nonradiative recombination. Hence, a selective targeting anchor strategy that employs phenethylammonium iodide and ethylenediamine diiodide as co-modifiers to selectively anchor with Pb- and Sn-related active sites and passivate bimetallic traps, respectively, is established. Furthermore, the selectivity of the molecular oriented anchor passivation is demonstrated through energetic depth specificity of Pb- and Sn-related traps. As a result, a substantially enhanced open-circuit voltage (VOC ) from 0.79 to 0.90 V for the LTPSCs is achieved, yielding a champion PCE of 22.51%, which is the highest PCE among the reported ideal-bandgap PSCs. The VOC loss is reduced to 0.43 V.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China