Your browser doesn't support javascript.
loading
Intraspecific hybridization as a mitigation strategy of ocean acidification in marine bivalve noble scallop Chlamys nobilis.
Zheng, Hongjin; Tan, Karsoon; Zhang, Hongkuan; Ma, Hongyu; Li, Shengkang; Zheng, Huaiping.
Afiliação
  • Zheng H; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
  • Tan K; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
  • Zhang H; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
  • Ma H; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
  • Li S; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
  • Zheng H; Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou 515063, China; Research Center for Subtropical Mariculture Engineering Technology of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou
Sci Total Environ ; 832: 154736, 2022 Aug 01.
Article em En | MEDLINE | ID: mdl-35351507
The driving factors of climate change, especially ocean acidification (OA), have many detrimental impacts on marine bivalves. Hybridization is one of the important methods to improve environmental tolerance of animals and plants. In this study, we explored the feasibility of intraspecific hybridization as an OA mitigation strategy in noble scallop Chlamys nobilis (ecologically and economically important bivalve species). The results of this study revealed that exposure of C. nobilis to OA condition significantly reduced the hatching rate, survival rate, growth rate (shell height, shell length, shell width and shell weight), and total carotenoid content (TCC), as well as increased the deformity rate of C. nobilis larvae. Interestingly, under both ambient water and OA condition, the intraspecific hybridization of C. nobilis exhibited heterosis in terms of hatching rate, survival rate and growth rate (excepted for growth in shell length under OA). Transcriptome sequencing of C. nobilis (inbreed and hybrid under ambient and OA conditions) identified four main differentially expressed genes involved in signal transduction, biological process maintenances, nucleic acid binding and post-translational modification. In addition, the expression of these four genes in hybrid C. nobilis was significantly higher than that in inbreed C. nobilis. In conclusion, hybrid C. nobilis showed heterosis in growth rate and survival rate under both ambient water and acidified seawater condition, which may be the result of enhanced expression of genes related to signal transduction, DNA replication and post-translational modification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água do Mar / Pectinidae Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água do Mar / Pectinidae Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article
...