Your browser doesn't support javascript.
loading
Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images.
Brkic, Ivan; Miler, Mario; Sevrovic, Marko; Medak, Damir.
Afiliação
  • Brkic I; Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kaciceva 26, 10000 Zagreb, Croatia.
  • Miler M; Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kaciceva 26, 10000 Zagreb, Croatia.
  • Sevrovic M; Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Vukeliceva 4, 10000 Zagreb, Croatia.
  • Medak D; Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kaciceva 26, 10000 Zagreb, Croatia.
Sensors (Basel) ; 22(15)2022 Jul 23.
Article em En | MEDLINE | ID: mdl-35898014
The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_accidentes_transito Assunto principal: Viagem / Nações Unidas / Acidentes de Trânsito / Materiais de Construção Tipo de estudo: Diagnostic_studies / Prognostic_studies País/Região como assunto: Europa Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Croácia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_accidentes_transito Assunto principal: Viagem / Nações Unidas / Acidentes de Trânsito / Materiais de Construção Tipo de estudo: Diagnostic_studies / Prognostic_studies País/Região como assunto: Europa Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Croácia
...