Your browser doesn't support javascript.
loading
Internal Wireless Electrical Stimulation from Piezoelectric Barium Titanate Nanoparticles as a New Strategy for the Treatment of Triple-Negative Breast Cancer.
Zhan, Lizhen; Xiao, Cairong; Li, Changhao; Zhai, Jinxia; Yang, Fabang; Piao, Jinhua; Ning, Chengyun; Zhou, Zhengnan; Yu, Peng; Qi, Suijian.
Afiliação
  • Zhan L; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
  • Xiao C; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Li C; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Zhai J; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Yang F; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Piao J; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
  • Ning C; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Zhou Z; China-Singapore International Joint Research Institute, Guangzhou 511365, China.
  • Yu P; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
  • Qi S; School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
ACS Appl Mater Interfaces ; 14(39): 45032-45041, 2022 Oct 05.
Article em En | MEDLINE | ID: mdl-36153948
ABSTRACT
Triple-negative breast cancer (TNBC) is an aggressive BC subtype with a higher metastatic rate and a worse 5-year survival ratio than the other BC. It is an urgent need to develop a noninvasive treatment with high efficiency to resist TNBC cell proliferation and invasion. Internal wireless electric stimulation (ES) based on piezoelectric materials is an emerging noninvasive strategy, with adjustable ES intensity and excellent biosafety. In this study, three different barium titanate nanoparticles (BTNPs) with different crystal phases and piezoelectric properties were studied. Varying intensities of internal ES were generated from the three BTNPs (i.e., BTO, U-BTO, P-BTO). In vitro tests revealed that the internal ES from BTNPs was efficient at reducing the proliferative potential of cancer cells, particularly BC cells. In vitro experiments on MDA-MB-231, a typical TNBC cell line, further revealed that the internal wireless ES from BTNPs significantly inhibited cell growth and migration up to about 82% and 60%, respectively. In vivo evaluation of MDA-MB-231 tumor-bearing mice indicated that internal ES not only resisted almost 70% tumor growth but also significantly inhibited lung metastasis. More importantly, in vitro and in vivo studies demonstrated a favorable correlation between the anticancer impact and the intensities of ES. The underlying mechanism of MDA-MB-231 cell proliferation and metastasis inhibition caused by internal ES was also investigated. In summary, our results revealed the effect and mechanism of internal ES from piezoelectric nanoparticles on TNBC cell proliferation and migration regulation and proposed a promising noninvasive therapeutic strategy for TNBC with minimal side effects while exhibiting good therapeutic efficiency.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias de Mama Triplo Negativas Limite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias de Mama Triplo Negativas Limite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China
...