Your browser doesn't support javascript.
loading
Engineering human spinal microphysiological systems to model opioid-induced tolerance.
Cai, Hongwei; Ao, Zheng; Tian, Chunhui; Wu, Zhuhao; Kaurich, Connor; Chen, Zi; Gu, Mingxia; Hohmann, Andrea G; Mackie, Ken; Guo, Feng.
Afiliação
  • Cai H; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
  • Ao Z; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
  • Tian C; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
  • Wu Z; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
  • Kaurich C; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
  • Chen Z; Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, 02115, United States.
  • Gu M; Division of Pulmonary Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States.
  • Hohmann AG; University of Cincinnati School of Medicine, Cincinnati, OH, 45229, United States.
  • Mackie K; Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, United States.
  • Guo F; Gill Center for Biomolecular Science, and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, United States.
Bioact Mater ; 22: 482-490, 2023 Apr.
Article em En | MEDLINE | ID: mdl-36330161
pioids are commonly used for treating chronic pain. However, with continued use, they may induce tolerance and/or hyperalgesia, which limits therapeutic efficacy. The human mechanisms of opioid-induced tolerance and hyperalgesia are significantly understudied, in part, because current models cannot fully recapitulate human pathology. Here, we engineered novel human spinal microphysiological systems (MPSs) integrated with plug-and-play neural activity sensing for modeling human nociception and opioid-induced tolerance. Each spinal MPS consists of a flattened human spinal cord organoid derived from human stem cells and a 3D printed organoid holder device for plug-and-play neural activity measurement. We found that the flattened organoid design of MPSs not only reduces hypoxia and necrosis in the organoids, but also promotes their neuron maturation, neural activity, and functional development. We further demonstrated that prolonged opioid exposure resulted in neurochemical correlates of opioid tolerance and hyperalgesia, as measured by altered neural activity, and downregulation of µ-opioid receptor expression of human spinal MPSs. The MPSs are scalable, cost-effective, easy-to-use, and compatible with commonly-used well-plates, thus allowing plug-and-play measurements of neural activity. We believe the MPSs hold a promising translational potential for studying human pain etiology, screening new treatments, and validating novel therapeutics for human pain medicine.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioact Mater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioact Mater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos
...